References
Limitations | “A” animal trial, “B” bench test, “VIT” in-vitro trial, “P” published results based on the analysis of human mesh explants, “PB” published results mainly based on bench tests |
Literature | |
1. | Klinge U, Klosterhalfen B, Öttinger AP, et al (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–3493. https://doi.org/10.1016/S0142-9612(02)00070-4 |
2. |
Klink CD, Junge K, Binnebösel M, et al (2011)
Comparison of long-term biocompability of PVDF and PP meshes.
J Invest Surg 24:292–299. https://doi.org/10.3109/08941939.2011.589883
|
3. |
Gerullis H, Georgas E, Eimer C, et al (2011)
Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.
Surgical technology international 21:21
|
4. |
Gerullis H, Klosterhalfen B, Borós M, et al (2013) |
5. | Laroche G, Marois Y, Schwarz E, et al (1995) Polyvinylidene Fluoride Monofilament Sutures: Can They Be Used Safely for Long-Term Anastomoses in the Thoracic Aorta? Artificial Organs 19:1190–1199. https://doi.org/10.1111/j.1525-1594.1995.tb02282.x |
6. | Mühl T, Binnebösel M, Klinge U, Goedderz T (2008) New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials 84B:176–183. https://doi.org/10.1002/jbm.b.30859 |
7. | Hansen NL, Barabasch A, Distelmaier M, et al (2013) First in-human magnetic resonance visualization of surgical mesh implants for inguinal hernia treatment. Investigative radiology 48:770–778. https://doi.org/10.1097/RLI.0b013e31829806ce |
8. | Klinge U, Klosterhalfen B (2012) Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 16:251–258. https://doi.org/10.1007/s10029-012-0913-6 |
9. | Berger D, Bientzle M (2007) Laparoscopic Repair of Parastomal Hernias: A Single Surgeon’s Experience in 66 Patients. Diseases of the Colon & Rectum 50:1668–1673. https://doi.org/10.1007/s10350-007-9028-z |
10. | Berger D, Bientzle M (2009) Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair! A prospective, observational study with 344 patients. Hernia 13:167–172. https://doi.org/10.1007/s10029-008-0435-4 |
11. | Junge K, Binnebösel M, Rosch R, et al (2009) Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surgical Endoscopy 23:327–333. https://doi.org/10.1007/s00464-008-9923-y |
12. | Berger D (2010) Laparoskopische Reparation der parastomalen Hernie. Chirurg 81:988–992. https://doi.org/10.1007/s00104-010-1933-3 |
13. | Berger D (2010) Laparoskopische IPOM-Technik. Der Chirurg 81:211–215. https://doi.org/10.1007/s00104-009-1819-4 |
14. | Berger D, Bientzle M (2006) Principles of laparoscopic repair of ventral hernias. European Surgery 38:393–398. https://doi.org/10.1007/s10353-006-0284-2 |
15. | Berger D (2008) Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST®). Hernia 12:243–246. https://doi.org/10.1007/s10029-007-0318-0 |
16. | Junge K, Binnebösel M, Kauffmann C, et al (2011) Damage to the spermatic cord by the Lichtenstein and TAPP procedures in a pig model. Surg Endosc 25:146–152. https://doi.org/10.1007/s00464-010-1148-1 |
17. | Godazandeh G, Mortazian M (2012) Laparoscopic Repair of Morgagni Hernia Using Polyvinylidene Fluoride (PVDF) Mesh. Middle East J Dig Dis 4:232–235 |
18. | Ladurner R, Drosse I, Bürklein D, et al (2011) Cyanoacrylate Glue for Intra-abdominal Mesh Fixation of Polypropylene-Polyvinylidene Fluoride Meshes in a Rabbit Model. Journal of Surgical Research 167:e157–e162. https://doi.org/10.1016/j.jss.2009.11.710 |
19. | Roberts DG (2012) Laparoscopic Intraperitoneal Onlay Repair of Abdominal Incisional and Ventral Hernias wth Polyvinylidene Fluoride-Coated Polypropylene Mesh; A Retrospective Study with Short to Medium Term Results. Science Journal of Clinical Medicine 1:10. https://doi.org/10.11648/j.sjcm.20120101.13 |
20. | Göretzlehner U, Müllen A (2007) PVDF als Implantat-Werkstoff in der Urogynäkologie. BIOmaterialien 8 (S1):2 |
21. | Klinge U, Binneboesel M, Kuschel S, Schuessler B (2007) Demands and properties of alloplastic implants for the treatment of stress urinary incontinence. Expert Review of Medical Devices 4:349–359. https://doi.org/10.1586/17434440.4.3.349 |
22. | Noé KG, Spüntrup C, Anapolski M (2013) Laparoscopic pectopexy: a randomised comparative clinical trial of standard laparoscopic sacral colpo-cervicopexy to the new laparoscopic pectopexy. Short-term postoperative results. Archives of Gynecology and Obstetrics 287:275–280. https://doi.org/10.1007/s00404-012-2536-7 |
23. | Jaeger W, Mirenska O, Brügge S (2012) Surgical Treatment of Mixed and Urge Urinary Incontinence in Women. Gynecologic and Obstetric Investigation 74:157–164. https://doi.org/10.1159/000339972 |
24. | Chui LB, Ng WT, Sze YS, et al (2010) Prospective, randomized, controlled trial comparing lightweight versus heavyweight mesh in chronic pain incidence after TEP repair of bilateral inguinal hernia. Surgical Endoscopy 24:2735–2738. https://doi.org/10.1007/s00464-010-1036-8 |
25. | Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Review Medical Devices 2:103–117. https://doi.org/10.1586/17434440.2.1.103 |
26. | Otto J, Kaldenhoff E, Kirschner-Hermanns R, et al (2014) Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates: Elongation of textile pelvic floor implants. Journal of Biomedical Materials Research Part A 102:1079–1084. https://doi.org/10.1002/jbm.a.34767 |
27. | Mary C, Marois Y, King MW, et al (1998) Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery. ASAIO Journal 44:199–206. https://doi.org/10.1097/00002480-199805000-00015 |
28. | Klinge U, Klosterhalfen B Comparison of Bacterial Adherences |
29. | Kuehnert N, Kraemer NA, Otto J, et al (2012) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26:1468–1475. https://doi.org/10.1007/s00464-011-2057-7 |
30. | Lynen Jansen P, Klinge U, Anurov M, et al (2004) Surgical Mesh as a Scaffold for Tissue Regeneration in the Esophagus. European Surgical Research 36:104–111. https://doi.org/10.1159/000076650 |
31. | Naumann G, Albrich S, Skala C, et al (2012) Single-Incision Slings (SIS) – a New Option for the Surgical Treatment of Female Stress Urinary Incontinence. Geburtshilfe und Frauenheilkunde 72:125–131. https://doi.org/10.1055/s-0031-1298275 |
32. | Noé K-G, Schiermeier S, Alkatout I, Anapolski M (2015) Laparoscopic Pectopexy: A Prospective, Randomized, Comparative Clinical Trial of Standard Laparoscopic Sacral Colpocervicopexy with the New Laparoscopic Pectopexy—Postoperative Results and Intermediate-Term Follow-Up in a Pilot Study. Journal of Endourology 29:210–215. https://doi.org/10.1089/end.2014.0413 |
33. | Jager W, Ludwig S (2016) Does the Patients Age have an Influence on the Outcome of CESA (Cervico-Sacropexy) and VASA (Vagino-Sacropexy) for the Treatment of Urinary Incontinence in Women? Journal of Gerontology & Geriatric Research 05:https://doi.org/10.4172/2167-7182.1000277 |
34. | Rajshekhar S, Mukhopadhyay S, Morris E (2016) Early safety and efficacy outcomes of a novel technique of sacrocolpopexy for the treatment of apical prolapse. International Journal of Gynecology & Obstetrics 135:182–186. https://doi.org/10.1016/j.ijgo.2016.05.007 |
35. | Ludwig S, Stumm M, Mallmann P, Jager W (2016) Surgical Replacement of the Uterosacral- and Pubourethral-Ligaments as Treatment for Urgency Urinary Incontinence. Austin Journal of Women’s Health 3(1):1019 |
36. | Joukhadar R, Meyberg-Solomayer G, Hamza A, et al (2015) A Novel Operative Procedure for Pelvic Organ Prolapse Utilizing a MRI-Visible Mesh Implant: Safety and Outcome of Modified Laparoscopic Bilateral Sacropexy. BioMed Research International 2015:1–9. https://doi.org/10.1155/2015/860784 |
37. | Jaeger W, Ludwig S, Stumm M, Mallmann P (2015) Standardized bilateral mesh supported uterosacral ligament replacement – cervico-sacropexy (CESA) and vagino-sacropexy (VASA) operations for female genital prolapse. Pelviperineology 35:17–21 |
38. | Kaldenhoff E, Klinge U, Klosterhalfen B, et al (2013) Von der Prolaps- zur Problempatientin: Schenken wir der Qualität von Netzimplantaten genügend Aufmerksamkeit? Der Gynäkologe 46:469–476. https://doi.org/10.1007/s00129-012-3124-4 |
39. | Ludwig S, Stumm M, Mallmann P, Jager W (2016) TOT 8/4: A Way to Standardize the Surgical Procedure of a Transobturator Tape. BioMed Research International 2016:1–4. https://doi.org/10.1155/2016/4941304 |
40. | Najjari L, Hennemann J, Kirschner-Hermanns R, et al (2014) Visualization of Polypropylene and Polyvinylidene Fluoride Slings in Perineal Ultrasound and Correlation with Clinical Outcome. BioMed Research International 2014:1–8. https://doi.org/10.1155/2014/181035 |
41. | Sabadell J, Larrain F, Gracia-Perez-Bonfils A, et al (2016) Comparative study of polyvinylidene fluoride and polypropylene suburethral slings in the treatment of female stress urinary incontinence: PVDF/polypropylene in suburethral slings. Journal of Obstetrics and Gynaecology Research 42:291–296.https://doi.org/10.1111/jog.12899 |
42. | Balsamo R, Illiano E, Zucchi A, et al (2018) Sacrocolpopexy with polyvinylidene fluoride mesh for pelvic organ prolapse: Mid term comparative outcomes with polypropylene mesh. European Journal of Obstetrics & Gynecology and Reproductive Biology 220:74–78. https://doi.org/10.1016/j.ejogrb.2017.11.018 |
43. | Barski D, Arndt C, Gerullis H, et al (2017) Transvaginal PVDF-mesh for cystocele repair: A cohort study. International Journal of Surgery 39:249–254. https://doi.org/10.1016/j.ijsu.2017.02.006 |
44. | Ludwig S, Stumm M (2016) Surgical Treatment of Urgency Urinary Incontinence, OAB (Wet), Mixed Urinary Incontinence, and Total Incontinence by Cervicosacropexy or Vaginosacropexy. Gynecology & Obstetrics 6:. https://doi.org/10.4172/2161-0932.1000404 |
45. | Kale A, Biler A, Terzi H, et al (2017) Laparoscopic pectopexy: initial experience of single center with a new technique for apical prolapse surgery. International braz j urol 43:903–909. https://doi.org/10.1590/s1677-5538.ibju.2017.0070 |
46. | Iva U, Nikhil S, Geertje C, et al (2017) In vivo documentation of shape and position changes of MRI-visible mesh placed in rectovaginal septum. Journal of the Mechanical Behavior of Biomedical Materials 75:379–389. https://doi.org/10.1016/j.jmbbm.2017.08.005 |
47. | Sindhwani N, Liaquat Z, Urbankova I, et al (2015) Immediate postoperative changes in synthetic meshes – In vivo measurements. J Mech Behav Biomed Mater 55:228–235. https://doi.org/10.1016/j.jmbbm.2015.10.015 |
48. | Sindhwani N, Feola A, De Keyzer F, et al (2015) Three-dimensional analysis of implanted magnetic-resonance-visible meshes. International Urogynecology Journal 26:1459–1465. https://doi.org/10.1007/s00192-015-2681-1 |
49. | Gräf CM, Kupec T, Stickeler E, et al (2016) Tomographic Ultrasound Imaging to Control the Placement of Tension-Free Transobturator Tape in Female Urinary Stress Incontinence. BioMed Research International 2016:1–6. https://doi.org/10.1155/2016/6495858 |
50. | Roman S, Urbánková I, Callewaert G, et al (2016) Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits. Journal of Urology 196:261–269. https://doi.org/10.1016/j.juro.2016.02.067 |
51. | Köhler G, Pallwein-Prettner L, Lechner M, et al (2015) First human magnetic resonance visualisation of prosthetics for laparoscopic large hiatal hernia repair. Hernia 19:975–982. https://doi.org/10.1007/s10029-015-1398-x |
52. | Silva RA, Silva PA, Carvalho ME (2007) Degradation Studies of Some Polymeric Biomaterials: Polypropylene (PP) and Polyvinylidene Difluoride (PVDF). MSF 539–543:573–576. https://doi.org/10.4028/www.scientific.net/MSF.539-543.573 |
53. | Zhu L-M, Schuster P, Klinge U (2015) Mesh implants: An overview of crucial mesh parameters. World Journal of Gastrointestinal Surgery 7:226. https://doi.org/10.4240/wjgs.v7.i10.226 |
54. | Muysoms F, Beckers R, Kyle-Leinhase I (2018) Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh. Surg Endosc 32:2822–2830. https://doi.org/10.1007/s00464-017-5987-x |
55. | Kohler A, Lavanchy JL, Lenoir U, et al (2019) Effectiveness of Prophylactic Intraperitoneal Mesh Implantation for Prevention of Incisional Hernia in Patients Undergoing Open Abdominal Surgery: A Randomized Clinical Trial. JAMA Surg 154:109. https://doi.org/10.1001/jamasurg.2018.4221 |
56. | Köhler G, Pallwein-Prettner L, Koch OO, et al (2015) Magnetic resonance-visible meshes for laparoscopic ventral hernia repair. JSLS 19:e2014.00175. https://doi.org/10.4293/JSLS.2014.00175 |
57. | Jan H, Ghai V, Thakar R (2018) Simplified Laparoscopic Sacrohysteropexy. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2018.01.014 |
58. | Verbo A, Pafundi P, Manno A, et al (2016) Polyvinylidene Fluoride Mesh (PVDF, DynaMesh®-IPOM) in The Laparoscopic Treatment of Incisional Hernia: A Prospective Comparative Trial versus Gore® ePTFE DUALMESH® Plus. Surg Technol Int 28:147–151 |
59. | Conde-Muíño R, Díez J-L, Martínez A, et al (2017) Preventing parastomal hernias with systematic intraperitoneal specifically designed mesh. BMC Surg 17:41. https://doi.org/10.1186/s12893-017-0237-7 |
60. | Fischer I, Wundsam H, Mitteregger M, Köhler G (2017) Parastomal Hernia Repair with a 3D Funnel Intraperitoneal Mesh Device and Same-Sided Stoma Relocation: Results of 56 Cases. World J Surg 41:3212–3217. https://doi.org/10.1007/s00268-017-4130-4 |
61. | Köhler G, Hofmann A, Lechner M, et al (2016) Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation. Hernia 20:151–159. https://doi.org/10.1007/s10029-015-1380-7 |
62. | Köhler G, Wundsam H, Pallwein-Prettner L, et al (2015) Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment. Eur Surg 47:127–132. https://doi.org/10.1007/s10353-015-0319-7 |
63. | Köhler G, Emmanuel K (2017) Laparoscopic stoma relocation for parastomal hernia treatment by using a magnetic resonance visible three-dimensional implant. ANZ J Surg 87:411–412. https://doi.org/10.1111/ans.12899 |
64. | Köhler G, Fischer I, Wundsam H (2018) A Novel Technique for Parastomal Hernia Repair Combining a Laparoscopic and Ostomy-Opening Approach. J Laparoendosc Adv Surg Tech A 28:209–214. https://doi.org/10.1089/lap.2017.0313 |
65. | Köhler G, Mayer F, Wundsam H, et al (2015) Changes in the Surgical Management of Parastomal Hernias Over 15 Years: Results of 135 Cases. World J Surg 39:2795–2804. https://doi.org/10.1007/s00268-015-3187-1 |
66. | Zhang H, Xie J-M, Miao J-Q, Wu H-R (2016) Hybrid Approaches for Complex Parastomal Hernia Repair. J Coll Physicians Surg Pak 26:72–73. https://doi.org/01.2016/JCPSP.7273 |
67. | García-Pastor P, Hidalgo M, Gutierrez R, et al (2018) Prospective Multicenter Blinded Randomized Study Comparing PP and PVDF Mesh Implants in Lichtenstein Procedure with Respect to Pain and Recurrence. JSM Surgical Procedures 1(1):1002 |
68. | Conze J, Junge K, Weiß C, et al (2008) New polymer for intra-abdominal meshes-PVDF copolymer. Journal of Biomedical Materials Research Part B: Applied Biomaterials 87B:321–328. https://doi.org/10.1002/jbm.b.31106 |
69. | Kuehnert N, Otto J, Conze J, et al (2014) Time-Dependent Changes of Magnetic Resonance Imaging-Visible Mesh Implants in Patients. Investigative Radiology 49:439–444. https://doi.org/10.1097/RLI.0000000000000051 |
70. | Hansen NL, Ciritsis A, Otto J, et al (2015) Utility of Magnetic Resonance Imaging to Monitor Surgical Meshes: Correlating Imaging and Clinical Outcome of Patients Undergoing Inguinal Hernia Repair. Investigative Radiology 50:436–442. https://doi.org/10.1097/RLI.0000000000000148 |
71. | Weyhe D, Klinge U, Uslar VN, et al (2019) Follow Up Data of MRI-Visible Synthetic Meshes for Reinforcement in Large Hiatal Hernia in Comparison to None-Mesh Repair-A Prospective Cohort Study. Front Surg 6:17. https://doi.org/10.3389/fsurg.2019.00017 |
72. | Suárez-Grau JM, del Agua IA, Bellido Luque JA, et al (2016) Initial experience in laparoscopic bilateral inguinal hernia repair (TEP) with new anatomical mesh with large pore and low weight (Dynamesh Endolap) in short stay (6 months follow-up). Ambulatory Surgery 22(3):89–91 |
73. | Cassis C, Mukhopadhyay S, Morris E (2019) Standardizing abdominal sacrocolpopexy for the treatment of apical prolapse: One year on. Int J Gynecol Obstet 147:49–53. https://doi.org/10.1002/ijgo.12935 |
74. | Bravo-Salva A, González-Castillo AM, Vela-Polanco FF, et al (2020) Incidence of Incisional Hernia After Emergency Subcostal Unilateral Laparotomy: Does Augmentation Prophylaxis Play a Role? World J Surg 44:741–748. https://doi.org/10.1007/s00268-019-05282-7 |
75. | Köhler G (2020) Prinzipien und Parallelen der Prävention und Reparation parastomaler Hernien mit Netzen. Chirurg 91:245–251. https://doi.org/10.1007/s00104-019-01047-z |
76. | Lechner M, Meissnitzer M, Borhanian K, et al (2019) Surgical and radiological behavior of MRI-depictable mesh implants after TAPP repair: the IRONMAN study. Hernia 23:1133–1140. https://doi.org/10.1007/s10029-019-02019-2 |
77. | Szczepkowski M, Skoneczny P, Przywózka A, et al (2015) New minimally invasive technique of parastomal hernia repair – methods and review. Videosurgery and Other Miniinvasive Techniques 1:1–7. https://doi.org/10.5114/wiitm.2015.50052 |
78. | Tully KH, Roghmann F, Pastor J, et al (2019) Parastomal Hernia Repair With 3-D Mesh Implants After Radical Cystectomy and Ileal Conduit Urinary Diversion – A Single- center Experience Using a Purpose Made Alloplastic Mesh Implant. Urology 131:245–249. https://doi.org/10.1016/j.urology.2019.05.006 |
79. | Villalobos RN, Mias MC, Gas C, et al (2019) Atraumatic laparoscopic intraperitoneal mesh fixation using a new laparoscopic device: an animal experimental study. Hernia 23:1123–1132. https://doi.org/10.1007/s10029-019-02008-5 |
80. | López-Borao J, Madrazo-González Z, Kreisler E, Biondo S (2019) Prevention of parastomal hernia after abdominoperineal excision with a prophylactic three-dimensional funnel mesh. Colorectal Dis 21:1326–1334. https://doi.org/10.1111/codi.14738 |
81. | Costa Cruz DSL da, D´Ancona CAL, Silva Filho WP da, et al (2020) Parameters of 2-Dimensional Perineal Ultrasonography Before and After Male Sling Procedure for Urinary Incontinence After Radical Prostatectomy. Urology 136:257–262. https://doi.org/10.1016/j.urology.2019.10.004 |
82. | Gil Ugarteburu R, Rúger Jiménez L, Rodríguez Villamil L, et al (2019) Laparoscopic Abdominopexy: Surgery for Vaginal Prolapse. JSLS 23:e2019.00012. https://doi.org/10.4293/JSLS.2019.00012 |
83. | Ludwig S, Becker I, Mallmann P, Jäger W (2019) Comparison of Solifenacin and Bilateral Apical Fixation in the Treatment of Mixed and Urgency Urinary Incontinence in Women: URGE 1 Study, A Randomized Clinical Trial. In Vivo 33:1949–1957. https://doi.org/10.21873/invivo.11690 |
84. | Noé GK, Schiermeier S, Papathemelis T, et al (2020) Prospective international multicenter pectopexy trial: Interim results and findings post surgery. European Journal of Obstetrics & Gynecology and Reproductive Biology 244:81–86. https://doi.org/10.1016/j.ejogrb.2019.10.022 |
85. | Rexhepi S, Rexhepi E, Stumm M, et al (2018) Laparoscopic Bilateral Cervicosacropexy and Vaginosacropexy: New Surgical Treatment Option in Women with Pelvic Organ Prolapse and Urinary Incontinence. Journal of Endourology 32:1058–1064. https://doi.org/10.1089/end.2018.0474 |
86. | Wilson P (2020) Laparoscopic intraperitoneal onlay mesh (IPOM) repair using n-butyl-2-cyanoacrylate (Liquiband Fix8TM) for mesh fixation: learning experience and short-medium term results. Hernia 24:1387–1396. https://doi.org/10.1007/s10029-020-02144-3 |
87. | Sánchez-Arteaga A, Tallón-Aguilar L, Tinoco-González J, et al (2021) Use of polyvinylidene fluoride (PVDF) meshes for ventral hernia repair in emergency surgery. Hernia 25:99–106. https://doi.org/10.1007/s10029-020-02209-3 |
88. | Mäkäräinen-Uhlbäck EJ, Klintrup KHB, Vierimaa MT, et al (2020) Prospective, Randomized Study on the Use of Prosthetic Mesh to Prevent a Parastomal Hernia in a Permanent Colostomy: Results of a Long-term Follow-up. Diseases of the Colon & Rectum 63:678–684. https://doi.org/10.1097/DCR.0000000000001599 |
89. | Pereira JA, Pera M, López-Cano M, et al (2019) Hernias at the Extraction Incision After Laparoscopic Colon and Rectal Resection: Influence of Incision Location and Use of Prophylactic Mesh. Cirugía Española (English Edition) 97:20–26. https://doi.org/10.1016/j.cireng.2018.12.008 |
90. | Özveri E, Şanlı DET, Yıldırım D, et al (2021) Magnetic resonance visualization of iron-loaded meshes in patients with pain after inguinal hernia repair. Hernia 25:727–732. https://doi.org/10.1007/s10029-020-02168-9 |
91. | Hara T (2004) Ten-Year Results of Anterior Chamber Fixation of the Posterior ChamberIntraocular Lens. Arch Ophthalmol 122:1112. https://doi.org/10.1001/archopht.122.8.1112 |
92. | Bustos-Jiménez M, Martín-Cartes JA (2020) Surgical Treatment of Parostomal Hernias by Using A 3D Mesh. Surg Innov 27(6):695–696. https://doi.org/10.1177/1553350620936015 |
93. | Wang H, Klosterhalfen B, Müllen A, et al (2021) Degradation resistance of PVDF mesh in vivo in comparison to PP mesh. J Mech Behav Biomed Mater 119:104490. https://doi.org/10.1016/j.jmbbm.2021.104490 |
94. | Ramser M, Baur J, Keller N, et al (2021) Robotic hernia surgery I. English version: Robotic inguinal hernia repair (r TAPP). Video report and results of a series of 302 hernia operations. Chirurg 92 (Suppl 1):1–13. https://doi.org/10.1007/s00104-021-01446-1 |
95. | Ammann Y, Widmann B, Sparn M, et al (2021) Prophylactic Funnel Mesh to Prevent Parastomal Hernia in Permanent End Colostomy: A Retrospective Cohort Study. Colorectal Dis 23:2627–2636. https://doi.org/10.1111/codi.15817 |
96. | Cartes JAM, Bustos-Jiménez M, Tamayo-López MJ (2018) Parostomal Hernia: A More and More Frequent Surgical Challenge. Clin Surg 3:1960 |
97. | Carus T (2021) Die laparoskopische IPOM-Operation bei Nabel- und Bauchwandhernien – Netzfixierung in Klebetechnik. Chirurgische Allgemeine 4+5:212–216 |
98. | Noé GK, Schiermeier S, Papathemelis T, et al (2021) Prospective International Multicenter Pelvic Floor Study: Short-Term Follow-Up and Clinical Findings for Combined Pectopexy and Native Tissue Repair. JCM 10:217. https://doi.org/10.3390/jcm10020217 |
99. | Sabadell J, Pereda-Núñez A, Ojeda-de-los-Santos F, et al (2021) Polypropylene and polyvinylidene fluoride transobturator slings for the treatment of female stress urinary incontinence: 1-Year outcomes from a multicentre randomized trial. Neurourology and Urodynamics 40:475–482. https://doi.org/10.1002/nau.24586 |
100. | Karabulut A, Simavlı SA, Abban GM, et al (2016) Tissue reaction to urogynecologic meshes: effect of steroid soaking in two different mesh models. Int Urogynecol J 27:1583–1589. https://doi.org/10.1007/s00192-016-3013-9 |
101. | The HerniaSurge Group (2018) International guidelines for groin hernia management. Hernia 22:1–165. https://doi.org/10.1007/s10029-017-1668-x |
102. | Klinge U, Park J-K, Klosterhalfen B (2013) ‘The Ideal Mesh?’. Pathobiology 80:169–175. https://doi.org/10.1159/000348446 |
103. | Klosterhalfen B, Klinge U (2013) Retrieval study at 623 human mesh explants made of polypropylene – impact of mesh class and indication for mesh removal on tissue reaction. J Biomed Mater Res 101:1393–1399. https://doi.org/10.1002/jbm.b.32958 |
104. | Klinge U, Junge K, Spellerberg B, et al (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and thein vivo consequences in a rat model. J Biomed Mater Res 63:765–771. https://doi.org/10.1002/jbm.10449 |
105. | Klinge U, Klosterhalfen B, Birkenhauer V, et al (2002) Impact of Polymer Pore Size on the Interface Scar Formation in a Rat Model. Journal of Surgical Research 103:208–214. https://doi.org/10.1006/jsre.2002.6358 |
106. | Barakat B, Hijazi S, Vogeli T-A (2021) Use of polyvinylidene fluoride in treatment of female stress urinary incontinence: Efficacy and safety of midurethral slings: 24-month follow-up results. Turkish Journal of Urology 47:216–222. https://doi.org/10.5152/tud.2021.21059 |
107. | Göretzlehner U (2007) PVDF as an implant material in urogynaecology. Biomaterialien 8 (S1) |
108. | Padilla-Fernández B, García-Cenador MB, Gómez-García A, et al (2013) Results of the surgical correction of urinary stress incontinence according to the type of transobturator tape utilized. Arch Ital Urol Androl 85:149–153. https://doi.org/10.4081/aiua.2013.3.149 |
109. | Baker JJ, Öberg S, Rosenberg J (2023) Reoperation for Recurrence is Affected by Type of Mesh in Laparoscopic Ventral Hernia Repair: A Nationwide Cohort Study. Annals of Surgery 277:335–342. https://doi.org/10.1097/SLA.0000000000005206 |
110. | Pereira-Rodríguez JA, Amador-Gil S, Bravo-Salva A, et al (2021) Implementing a protocol to prevent incisional hernia in high-risk patients: a mesh is a powerful tool. Hernia 26:457–466 . https://doi.org/10.1007/s10029-021-02527-0 |
112. | Birolini C, Tanaka EY, de Miranda JS, et al (2022) The early outcomes of complex abdominal wall reconstruction with polyvinylidene (PVDF) mesh in the setting of active infection: a prospective series. Langenbecks Arch Surg 407:3089–3099. https://doi.org/10.1007/s00423-022-02625-2 |
113. | Poluzzi M, Campo G (2022) Treatment of Male Stress Urinary Incontinence with A Fixed Sling Made of PVDF – 6-Year Follow-Up Data. J Urol Ren Dis 7:1273. https://doi.org/10.29011/2575-7903.001273 |
114. | Haroon M, Morarasu S, Morarasu B, et al (2022) Assessment of feasibility and safety of cyanoacrylate glue versus absorbable tacks for inguinal hernia mesh fixation. A prospective comparative study. Videosurgery and Other Miniinvasive Techniques 18:90–98. https://doi.org/10.5114/wiitm.2022.119780 |
115. | Vierstraete M, Beckers R, Vangeel L, et al (2023) Prospective cohort study on mesh shrinkage measured with MRI after robot-assisted minimal invasive retrorectus ventral hernia repair using an iron-oxide-loaded polyvinylidene fluoride mesh. Surg Endosc 37:4604–4612. https://doi.org/10.1007/s00464-023-09938-3 |
116. | Beckers R, Vierstraete M, Muysoms F (2023) 3D Imaging of the Abdominal Wall. In: Docimo S, Blatnik JA, Pauli EM (eds) Fundamentals of Hernia Radiology. Springer International Publishing, Cham, pp 97–124 |
117. | Wang H, Klosterhalfen B, Klinge U, et al (2023) Influence of polypropylene mesh degradation on tissue inflammatory reaction. J Biomedical Materials Res 111:1110–1119. https://doi.org/10.1002/jbm.a.37494 |
118. | Wang Y, Zhang P (2014) A comparative study of polyvinylidene fluoride and polypropylene hernia meshes in creep behavior and elasticity. Textile Research Journal 84:1558–1566. https://doi.org/10.1177/0040517514525879 |
119. | Schmitz SM, Helmedag MJ, Kroh A, et al (2023) Choice of Polymer, but Not Mesh Structure Variation, Reduces the Risk of Bacterial Infection with Staphylococcus aureus In Vivo. Biomedicines 11:2083. https://doi.org/10.3390/biomedicines11072083 |
120. | Gossetti F, D’amore L, Grimaldi MR, et al (2023) Rives-Stoppa Repair of Incisional Hernias Using PVDF Mesh: A 10-Year Experience of a Dedicated Surgical Team. JSM Gastroenterology and Hepatology 10(1):1115 |
121. | Berger D (2023) Perspectives of prevention and treatment of parastomal hernia-what do we really know and where should we go? Mini-invasive Surg 7:24. https://doi.org/10.20517/2574-1225.2023.30 |
122. | Frotscher R, Staat M (2014) Stresses produced by different textile mesh implants in a tissue equivalent. BioNanoMaterials 15:25–30. https://doi.org/10.1515/bnm-2014-0003 |
123. | Zargham M, Dehghani M, Gholipour F, et al (2023) Triple-compartment strategy for abdominal sacral colpopexy using PVDF mesh: one-year report of anatomical and subjective outcomes. Int Urogynecol J 34:1907–1914. https://doi.org/10.1007/s00192-023-05471-y |
124. | Kritharides N, Papaconstantinou D, Kykalos S, et al (2023) Laparoscopic parastomal hernia repair: keyhole, Sugarbaker, sandwich, or hybrid technique with 3D mesh? An updated systematic review and meta-analysis. Langenbecks Arch Surg 408:448. https://doi.org/10.1007/s00423-023-03177-9 |
125. | Bertoglio CL, Maspero M, Morini L, et al (2021) Permanent end-colostomy parastomal hernia prevention using a novel three-dimensional mesh. Hernia 25:655–663. https://doi.org/10.1007/s10029-020-02326-z |
126. | Pini R, Mongelli F, Iaquinandi F, et al (2024) Switching from robotic-assisted extended transabdominal preperitoneal (eTAPP) to totally extraperitoneal (eTEP) hernia repair for umbilical and epigastric hernias. Sci Rep 14:1800. https://doi.org/10.1038/s41598-024-52165-6 |
127. | Clavé A, Yahi H, Hammou J-C, et al (2010) Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. International Urogynecology Journal 21:261–270. https://doi.org/10.1007/s00192-009-1021-8 |
128. | Junge K, Klinge U, Prescher A, et al (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5:113–118. https://doi.org/10.1007/s100290100019 |
129. | Śmietański M, Bury K, Tomaszewska A, et al (2012) Biomechanics of the front abdominal wall as a potential factor leading to recurrence with laparoscopic ventral hernia repair. Surg Endosc 26:1461–1467. https://doi.org/10.1007/s00464-011-2056-8 |
130. | Ostergard DR (2011) Degradation, infection and heat effects on polypropylene mesh for pelvic implantation: what was known and when it was known. International Urogynecology Journal 22:771–774. https://doi.org/10.1007/s00192-011-1399-y |
131. | Badia-Closa J, Comas-Isus J, Centeno-Alvarez A, et al (2024) Parastomal hernia prevention with an intraperitoneal prophylactic 3D-funnel mesh: review of the technique and middle- term results. Hernia 28:1129–1135. https://doi.org/10.1007/s10029-024-02989-y |
132. | Kallinowski F, Baumann E, Harder F, et al (2015) Dynamic intermittent strain can rapidly impair ventral hernia repair. Journal of Biomechanics 48:4026–4036. https://doi.org/10.1016/j.jbiomech.2015.09.045 |
133. | Kallinowski F, Harder F, Silva TG, et al (2017) Bridging with reduced overlap: fixation and peritoneal grip can prevent slippage of DIS class A meshes. Hernia 21:455–467. https://doi.org/10.1007/s10029-017-1583-1 |
134. | Kallinowski F, Ludwig Y, Löffler T, et al (2021) Biomechanics applied to incisional hernia repair – Considering the critical and the gained resistance towards impacts related to pressure. Clin Biomech (Bristol, Avon) 82:105253. https://doi.org/10.1016/j.clinbiomech.2020.105253 |
135. | Kallinowski F, Gutjahr D, Harder F, et al (2021) The Grip Concept of Incisional Hernia Repair—Dynamic Bench Test, CT Abdomen With Valsalva and 1-Year Clinical Results. Front Surg 8:602181. https://doi.org/10.3389/fsurg.2021.602181 |
Internal Test Reports | |
TR1. | CF_F02 Biocompatibility |
TR10. | I1_F03-01_SIS1_X Stability and Elongation (bench test) |
TR11. | I1_F03-02_SIS1_X Porosity and Formstability (bench test) |
TR12. | I1_F03-03_SIS1_X Formstability (bench test) |
TR13. | I1_F03-01-12_SIS1_X Loop Stability (bench test) |
TR21. | H1_F03-01-03_END1_X Tear Propagation Resistance (bench test) |
TR23. | H1_F03-01-05_END1_X Porosity (bench test) |
TR31. | H1_F03-01-03_CIC1_X Tear Propagation Resistance (bench test) |
TR33. | H1_F03-01-05_CIC1_X Porosity (bench test) |
TR35. | H1_F03-01-07_CIC1_X Rationale for Technical Specifications (bench test) |
TR38. | H1_F03-01-01_CIC1_X Tensile Test Elongation (bench test) |
TR50. | H1_F03-01-01_HIA1_X Tensile Test Elongation (bench test) |
TR51. | H1_F03-01-05_HIA1_X Porosity (bench test) |
TR62. | H1_F03-01-03_IPO1_X Tear Propagation Resistance (bench test) |
TR64. | H1_F03-01-05_IPO1_X Porosity (bench test) |
TR71. | H1_F03-01-05_IPS1_X Porosity (bench test) |
TR82. | H1_F03-01-03_LIC1_X Tear Propagation Resistance (bench test) |
TR82. | H1_F03-01-05_LIC1_X Porosity (bench test) |
TR100. | P1_F03-01-01_BSA1_X Tensile Test and Elongation (bench test) |
TR101. | P1_F03-01-05_BSA1_X Porosity (bench test) |
TR110. | P1_F03-01-01_PR1_X Tensile Test and Elongation (bench test) |
TR111. | P1_F03-01-05_PR1_X Porosity (bench test) |
TR120. | P1_F03-01-01_PRP1_X Tensile Test and Elongation (bench test) |
TR121. | P1_F03-01-05_PRP1_X Porosity (bench test) |
TR130. | P1_F03-01-01_PRS1_X Tensile Test and Elongation (bench test) |
TR132. | P1_F03-01-05_PRS1_X Porosity (bench test) |